References

Baran, Y., Bercovich, A., Sebe-Pedros, A., Lubling, Y., Giladi, A., Chomsky, E., Meir, Z., Hoichman, M., Lifshitz, A., and Tanay, A. 2019. MetaCell: Analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biology. doi:10.1186/s13059-019-1812-2.
Ben-Kiki, O., Bercovich, A., Lifshitz, A., and Tanay, A. 2022. Metacell-2: A divide-and-conquer metacell algorithm for scalable scRNA-seq analysis. Genome Biology 23(1): 100. doi:10.1186/s13059-022-02667-1.
Bilous, M., Tran, L., Cianciaruso, C., Gabriel, A., Michel, H., Carmona, S.J., Pittet, M.J., and Gfeller, D. 2022. Metacells untangle large and complex single-cell transcriptome networks. BMC Bioinformatics 23(1): 336. doi:10.1186/s12859-022-04861-1.
Persad, S., Choo, Z.-N., Dien, C., Sohail, N., Masilionis, I., Chaligné, R., Nawy, T., Brown, C.C., Sharma, R., Pe’er, I., Setty, M., and Pe’er, D. 2023. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nature Biotechnology. doi:10.1038/s41587-023-01716-9.